PHL 110 Fields and waves. Minor I exam 04 August 2012, 09.30AM to 10.30AM

Concentric conducting spherical shells with radii a and b (b > a) are maintained at a potential difference of V_0 such that V(r = b) = 0. Determine V and \vec{E} in the region between the shells. Determine the total charge induced on the shells and the capacitance of the capacitor, if the region between the shells has a dielectric. (6)

A plane interface between a metal and a dielectric material has a free surface charge density σ_f . Write down the normal and tangential components of \vec{E} and \vec{D} on both sides of the interface.

3. In a region of space, vector potential is given by $\vec{A} = \hat{z} \beta (x^2 + y^2)$, where β is a constant. Obtain (i) the magnetic field \vec{B} , (ii) the magnetic flux linked to a rectangular loop of width a and height b lying in y = 0 plane as shown in the figure 1, and (iii) the current density associated with this field.

4. (a) An electron of charge q and mass m moves in crossed electric and magnetic fields, $\vec{E} = E_0 \hat{x}$ and $\vec{B} = B_0 \hat{y}$ with constant velocity \vec{v}_0 . Estimate the value of this velocity. (2)

(b) Charge density in a region of space is $\rho(\vec{r}) = Cq[\delta^3(\vec{r}) - \delta^3(\vec{r} - 2\hat{x} - 2\hat{y})]$, where C is a constant. Obtain the electric flux linked to a sphere of radius R = 2 centered at (0,2,2).

Estimate the work done in moving an electron of charge -e from (R, 0, 0) to (0, R, 0) along a circular arc of radius R in the presence of a dipole $\vec{p} = p_0 \hat{x}$ fixed at the origin. (2)

A vector field A is given by $\vec{A} = \pi sin\theta \ \hat{r} + cos\theta \ \hat{\theta} + 6r\hat{\phi}$. Find $\int_0^C \vec{A} \cdot d\vec{l}$ along the path from point O (0,0,0) to C (0,1,0) through (1,0,0) as shown in the figure.2. (2)